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The automatic analysis of conversational audio remains difficult, in part, due to the presence of

multiple talkers speaking in turns, often with significant intonation variations and overlapping

speech. The majority of prior work on psychoacoustic speech analysis and system design has

focused on single-talker speech or multi-talker speech with overlapping talkers (for example, the

cocktail party effect). There has been much less focus on how listeners detect a change in talker or

in probing the acoustic features significant in characterizing a talker’s voice in conversational

speech. This study examines human talker change detection (TCD) in multi-party speech utterances

using a behavioral paradigm in which listeners indicate the moment of perceived talker change.

Human reaction times in this task can be well-estimated by a model of the acoustic feature distance

among speech segments before and after a change in talker, with estimation improving for models

incorporating longer durations of speech prior to a talker change. Further, human performance is

superior to several online and offline state-of-the-art machine TCD systems.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5084044

[JFL] Pages: 131–142

I. INTRODUCTION

Everyday speech communication involves more than

extracting a linguistic message.1 Listeners also track paralin-

guistic indexical information in speech signals, such as talker

identity, dialect, and emotional state.2 Indeed, in natural

speech communication, linguistic and indexical information

are likely to interact since conversations typically involve

multiple talkers who take turns of arbitrary duration, with

gaps on the order of only 200 ms.3 On the listener’s side, the

perception of conversational speech demands quick percep-

tion of talker changes to support communication.

Perceptual learning of talker identity enhances speech

intelligibility in both quiet4 and acoustically cluttered envi-

ronments.5,6 This suggests that sensitivity to talker attributes

affects speech recognition both in clear speech and under

adverse listening conditions. Further, talker dependent adapt-

ability in perception can be induced from exposure to just a

few sentences.7 These benefits hint at listeners’ ability to

track talkers in conversational speech, even in the absence of

visual or spatial cues.

Detecting a change in talker would seem to rely upon an

ability to track regularities in the perceived features specific

to a voice, and to detect changes from these upon a talker

change. Lavner et al. (2009)8 suggest that the talkers are

identified by a distinct group of acoustic features. Yet, Sell

et al. (2015)9 argue that a combination of vocal source, vocal

tract, and spectro-temporal receptive field10 features fail

to explain perceived talker discrimination in a listening

test with simple single-word utterances. In a similar way,

Fenn et al.11 have described inattention to talker changes

in the context of listening for comprehension as a form of

talker change deafness.12 They suggest that voice informa-

tion is not continuously monitored at a fine-grain level of

acoustic representation, and conversational expectations

may shape the way listeners direct attention to voice charac-

teristics and perceive differences in voice. In fact, Neuhoff

et al. (2014)13 found improved voice change detection when

the language is unfamiliar to the listener, suggesting that

there may be interactions between linguistic and indexical

information.

Acknowledging that conversational demands14 in natu-

ral speech will often shift attention toward acoustic features

that signal linguistic rather than indexical information, lis-

teners’ ability to detect talker changes does suggest that they

track the variability in acoustics features associated with a

talker’s voice. Yet, despite the importance of indexical char-

acteristics of speech to communication, quite little is known

about the nature of the detailed acoustic features across

which talkers differ, the distributions of information charac-

terizing different talkers along these acoustic features15,16

and the listeners’ ability to detect a change in talker. This is

especially true for fluent, connected speech, as opposed to

isolated words. In this paper, we aim to advance understand-

ing of the information human listeners use to track the

change in talker in continuous multi-party speech. We first

develop and test a novel experimental paradigm to examine

human talker change detection (TCD) performance. We next

model the listeners’ reaction time (RT) to respond to a talker

change in relationship to multiple acoustic features as a

means of characterizing the acoustic feature space that lis-

teners may track in a voice. We then relate these humana)Electronic mail: nsharma2@andrew.cmu.edu
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perceptual results with performance of state-of-the-art online

and offline machine systems implementing TCD.

A. RT as a measure of TCD

We developed a novel paradigm with the goal of obtaining

a continuous behavioral measure of listeners’ ability to detect a

change in talker across relatively fluent, continuous speech.

Each stimulus was composed of two concatenated 9–14 s utter-

ances sourced from audio books, and spoken by either a single

male talker or two different male talkers. The utterances were

always drawn from different stories, or parts of a story, so that

semantic continuity did not provide a clue to talker continuity.

Listeners responded with a button press upon detecting a talker

change, thus providing a continuous RT measure of how much

of an acoustic sample was needed to detect a change in talker.

Figure 1 provides an illustration of the paradigm. To the best

of our knowledge, this is the first application of a RT change-

detection approach to examine human TCD performance.

Past studies have used RT to analyze perception of sim-

pler acoustic attributes. For example, studies of tone onset

detection17 and broadband sound onset18,19 have reported an

inverse relationship between RT and stimulus loudness/spec-

tral bandwidth. Studies guiding the design of warning

sounds20,21 have shown faster detection of natural, compared

to synthetic stimuli. Particularly relevant to the present study,

recent research characterizes human listeners’ ability to track

distributional noise statistics in an audio stream by asking lis-

teners to report a change in statistics with a button press.22

Detection of a change was facilitated when listeners heard

longer noise samples. This prior work illustrates the promise

of the RT to detect a change as a means by which to examine

how listeners build a model of incoming sound regularities,

although speech signals are inherently more non-stationary,

and the distributional acoustic information that contributes to

talker identity is not well understood.

B. Comparing machine and human performance in
TCD

With an increasing repository of conversational audio

data,23,24 automatic detection of talker change is considered to

be an essential preprocessing in machine speech recogni-

tion.25 For example, the availability of time stamps corre-

sponding to talker change instants in a recording benefits both

speaker identification26 and speech recognition27 tasks.

Recent results from the machine systems literature on

TCD28–32 suggest that TCD is difficult. The state-of-the-art in

TCD can be categorized into two approaches: metric-based

and classification-based. The metric-based approach relies on

computing a distance, in some feature space, between succes-

sive short-time segments (such as 25 ms segments, with suc-

cessive shifts 10 ms) of a speech recording. A talker change is

flagged upon detection of a distance that exceeds a preset

threshold. The accuracy of TCD in metric-based approaches

is dependent on the choice of features (such as vocal tract fea-

tures33,34 and vocal source features30,35–37), segment duration

(usually >3–5 s), and the distance metric [such as likelihood

ratio,38 Bayesian information criterion (BIC),33,39 or improved

BIC40]. An alternative is the classification-based approach

whereby a binary classifier is trained to classify short-time

speech segments as talker change or no talker change. The

accuracy of the approach is dependent on the feature space,

the complexity of the classifier (such as support vector

machines,41 neural networks,30 and deep neural net-

works31,32), and the amount of training data. In the present

work, we evaluate the performance of a few state-of-the-art

machine systems across the same stimuli and with the same

performance metrics as used in the human perceptual para-

digm. These comparisons may help in identifying whether

there are performance gaps in human and machine TCD

across fairly continuous, fluent speech.

II. METHODS

A. Participants

A total of 17 participants in the age group of 18–36 yr

(university students and one staff member, median age 26 yr)

took part in the listening test. All listeners reported normal

hearing with good fluency in speaking and understanding

English. All participants provided informed consent to partici-

pate in the study, and the study protocol was approved by the

Carnegie Mellon University Institutional Review Board and

the Indian Institute of Science Review Board.

B. Stimuli

The stimuli were composed of concatenated utterances

from two talkers, talker Tx and talker Ty. The utterances were

FIG. 1. (Color online) Illustration of

the proposed TCD paradigm used in

the present listening test study.
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taken from audio books drawn from the LibriSpeech cor-

pus,42 a public-domain corpus of about 1000 h of audio data

by approximately 1000 distinct talkers. Each trial involved a

stimulus that was a concatenation of two utterances drawn

from the same, or two different, talkers. The utterances cor-

responded to sentences read out in the audio book, and fea-

tured natural speech intonation and a rise and fall in speech

envelope at the start and end. The sentences were chosen

randomly from the respective talker’s audio book. To avoid

an obvious TCD due to gender attributes, we chose all male

talkers. Based on an informal pilot experiment aimed at find-

ing a set of perceptually separable voices, we chose five talk-

ers from the corpus [identifications (IDs) 374, 2843, 5456,

7447, and 7505] for the listening test stimulus design (here,

referred to as T1, T2, etc.). The average fundamental fre-

quency (estimated using STRAIGHT43) and speaking rate

expressed as words spoken per second (estimated from the

audio book transcripts) of the five talkers are depicted in

Fig. 2. This shows significant overlap across talkers, making

TCD challenging.

To make a stimulus, talker Tx was chosen from the list of

N talkers, and a sentence utterance was retrieved from the cor-

responding talker’s audio book. A short utterance from

another talker Ty was chosen, and this was concatenated to the

utterance from Tx. As the utterances were natural speech,

there were natural pauses. Owing to this, the silent interval

between Tx’s end and Ty’s start after concatenation was ran-

dom and ranged from 200 to 1000 ms. In any stimulus, speech

corresponding to Tx was between 5 and 10 s and that corre-

sponding to Ty was 4 s. A sample stimulus is shown in Fig. 1.

For each pair of Tx–Ty talkers there were M¼ 8 unique

stimuli. The stimulus set can be represented as sampled from

a grid, as shown in Fig. 1. This resulted in a total of M�N2

¼ 200 distinct speech stimuli, each 9–14 s in duration.

C. Protocol and apparatus

A graphical user interface (GUI) for stimulus presenta-

tion was made using Gorilla,44 a software platform for

designing behavioral science tests. A test session comprised

three tasks carried out in sequence, namely, tasks-1, -2, and -

3. Task-1 measured RT for noise-to-tone detection and task-

2 measured RT for tone frequency change detection (see

supplementary material45). The acoustic attributes associated

with a change in the stimuli in these first two tasks were eas-

ily recognizable. As a result, task-1 and task-2 served as

benchmarks against which to compare human RT on task-3,

associated with TCD.

In each task, listeners were instructed to press a button

(space bar) immediately upon detection of a change in the

stimulus. The audio stopped after the button press and visual

feedback indicating “[�]” (or “X”) for “correct” (or

“incorrect”) detection appeared immediately (as shown in

Fig. 3). Participants were seated in sound-attenuated booths

wearing Sennheiser headphones46 (with flat spectral

response from 60 to 8000 Hz) with diotic stimulus presenta-

tion. In order to prevent fatigue, participants were allowed to

take breaks after blocks of 25 trials. Each participant listened

to a few (8–10) different task-3 TCD stimuli (not used in the

test) to become conversant with the paradigm. On average,

the complete test session was 45 min (with task-1, task-2,

and task-3 taking 5, 10 and 30 min, respectively).

D. Performance measures

For each trial in which there was a button press, the RT

for change detection was obtained as the difference between

the response instant (denoted by tr) and the ground-truth

acoustic change instant (denoted by tc), that is, RT¼ tr – tc.
An illustration is provided in Fig. 1. The lower limit for RT

for change perception in sound attributes is on the order of

RT< 225 ms.19 Hence, RTs in the range 0–225 ms are likely

to be associated with speech heard prior to the change instant

tc. The upper bound on RT (2000 ms) was chosen based on

prior research.22

We analyzed the hits, misses, and false alarms (FAs) in

the responses. The 200 trials in task-3 per subject were cate-

gorized into 2 pools for analyses:

Pool A, involving trials with Tx, a different talker from Ty

(two-talker trials), and either RT> 225 ms or no button

press.

Pool B, involving trials with Tx¼Ty and trials with Tx 6¼ Ty

but RT< 225 ms. These all are single-talker trials (i.e., the

trials in which the subject’s response was based on listening

to only one talker).

From these pools of data, we defined the following

detection measures:

• Hit rate: A hit corresponds to a trial in pool A with

225 ms<RT< 2000 ms. Hit rate is the ratio of number of

hits to the number of trials in pool A.

FIG. 2. (Color online) A comparison of talker attributes with respect to (a)

fundamental frequency variation and (b) word speaking rate. The vertical

bars indicate one standard deviation spread around the mean value.

FIG. 3. (Color online) An illustration of a listening test trial.
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• Miss rate: A miss corresponds to a trial in pool A with

RT> 2000 ms. Miss rate is the ratio of number of misses

to the number of trials in pool A. Note that the miss rate is

100 - hit rate.
• FA rate: A FA corresponds to a trial in pool B featuring a

button press. FA rate is the ratio of number of FAs to the

sum of trials in pool B and pool A (this equals 200).

III. RESULTS: HUMAN TCD EXPERIMENT

A. RT distribution

Figure 4(a) depicts the distribution of TCD RT tr as a func-

tion of ground-truth talker change instant tc for all trials that

have a talker change (taken from pool A and pool B). As seen,

the majority (�95%) of responses fall in the hit zone, that is,

tcþ 225< tr< tcþ 2000 ms. Analyzing the hit trials from pool
A, the subject-wise RT summary is shown in Fig. 4(b). Across

subjects, the response time to detect a talker change tended to

require mostly under a second of speech from the true change

instant with subject-dependent distributions of average RT and

variability across quantiles. Analyzing the detection parameters,

the subject-wise hit, miss, and FA rates are shown in Fig. 4(c).

The hit, miss, and FA rates averaged across all subjects were

97.38%, 2.62%, and 8.32%, respectively. Listeners performed

the TCD task very accurately; the average d0 across subjects

was 3.48 (d0 is defined as Zðhit rateÞ � ZðFA rateÞ, where

function ZðpÞ; p 2 ½0; 1�, is the inverse of the cumulative dis-

tribution function of the Gaussian distribution).

The distribution of RT corresponding to hits from all

subjects is shown in Fig. 5. The non-Gaussian nature of the

data is evident from the histogram and the normal probabil-

ity plot. To improve the Gaussianity, we applied a log trans-

formation (log10RT) on the RT data; the resulting

distribution is shown in Fig. 5. We used this transformed

data in the regression analysis, which is presented next.

B. Dependence of RT on speech duration

We examined the extent to which the duration of speech

experienced prior to a talker change impacted TCD. We

probed this using linear regression analysis on log RT (aver-

aged across subjects) versus speech duration before change

instant tc. As the stimulus set is composed of naturally spo-

ken sentences from story books, the grid along speech dura-

tion is non-uniformly sampled in the dataset. Hence, we

performed the regression analysis only for stimuli with

tc< 7000 ms, as beyond this tc value, the grid was sparsely

sampled. The result is shown in Fig. 6. The high variability

in logRT may be attributed to the complicated feature space

associated with speech signals. This is unlike what is

observed in tone frequency (or noise-to-tone) change detec-

tion for which the variability in RT correlates with the sim-

ple spectral difference (see supplementary material45 and

also Ref. 22). Despite considerable variability, we observe a

trend depicting TCD is slower with shorter samples of

speech from the initial talker (a decrease in the tc value).

Next, we attempt to model RT as a function of different

acoustic features extracted from the stimulus before and after

change instant to understand the acoustic dimensions listen-

ers may track in TCD.

C. Modeling RT with acoustic features

Past studies47,48 have used RT modeling to reveal visual

input features associated with object recognition. Motivated

by this, here, we model RT to detect a change in talker

across hit trials as a function of the difference in the acoustic

feature space between speech segments sampled before and

after the change instant. We consider a collection of acoustic

features that may be important in tracking voice identity,

and examine their ability to estimate human participants’

TCD RT.

The approach is illustrated in Figs. 7(a) and 7(b). Let Db

and Da denote segments of the stimulus before and after

change instant tc, respectively. We hypothesize that a listener

estimates acoustic features from these segments, summarizes

them, and compares the summary using a distance measure.

The resulting distance serves as strength of evidence for

change detection, and by Pi�eron’s law49 this should impact

the RT. The greater the distance, the faster listeners may

detect a talker change, and thus the smaller the RT value.

FIG. 4. (Color online) (a) Illustration of human RT versus the ground-truth talker change instant (tr versus tc) across a total of 2720 trials (with Tx 6¼Ty) over

17 subjects. The three inclined gray lines from bottom to top correspond to tr¼ tc, tcþ 225, tcþ 2000, respectively. NP stands for no button press. (b) Subject-

wise summary using a boxplot of RTs in trials with hits. The black dots correspond to means. (c) Subject-wise miss and FA rates, and d0 obtained from 200 tri-

als for each subject.
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We assume Da corresponds to the segment from tc to tr. For

Db, we use different segment durations before the change

instant (that is, 25%, 50%, 75%, and 100% of tc duration

segment before change instant tc).

1. Feature computation

A wide range of acoustic features can be computed

from Db and Da segments. Here, we consider the nine sets

of features described in Table I. These are chosen to sample

from a range of possible temporal and spectral acoustic fea-

tures [illustrated in Fig. 7(c)]. From the perspective of

speaker attributes, the feature set can be further grouped

into those capturing pitch (F0), vocal tract formants (line

spectral frequencies, LSFs; mel-spectrogram, MEL; mel-

frequency cepstral coefficients, MFCCs), rate of temporal

variation of vocal tract features [temporal derivatives50 of

MFCCs, namely, first-order temporal derivative of MFCCs

(MFCC-D) and second-order temporal derivative of

MFCCs (MFCC-DD)], perceived loudness (PLOUD51),

spectral timbre (SPECT), and the rate of temporal variation

in short-time energy (ENGY-D). These features are com-

puted every 10 ms with Hanning windowed short-time seg-

ments of 25 ms. All features were extracted using the

Yaafe52 Python package, an efficient open-source code

library for speech and audio analysis.

2. Regression on feature distance

For each feature set, we summarized the segments Db

and Da using the mean of the features in each segment. The

PLOUD and SPECT feature sets were characterized by a

combination of different features. Hence, we mean- and

variance-normalized these feature sets over the whole dura-

tion prior to segment-wise mean computation. Following

this, we computed the Euclidean distance between the

obtained means. Owing to significant variability in RT

across subjects [see Fig. 4(b)], we modeled each subject’s

RT separately.

We defined the number of trials with a hit for the pth

subject to be denoted by Np. Corresponding to these trials,

we have Np RTs, and for each RT we compute a distance

between the mean features extracted from segments Db and

Da. There are nine such distances based on the choice of fea-

tures, and we denote these by dk, k¼ 1,…,9, that is, one dis-

tance for each feature set. To evaluate the impact of the

feature distances on RT, we perform a linear regression on

feature distances to estimate the RT using a regression model

for the kth feature set
FIG. 6. Dependence of average RT on speech duration before the change

instant. The black line is the linear regression fit.

FIG. 5. (Color online) Illustration of

the distribution (obtained as a histo-

gram) of the RT data for trials on

which there was a hit for (a) raw RT

data and (b) log-transformed RT data

to improve the fit to a normal

distribution.
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w0

wk

h i
|ffl{zffl}

w

; (1)

where w0 and wk are the model parameters representing the

mean RT and slope of the regression line, respectively, and

RTi and dk,i denote the RT and feature distance in the ith
trial, respectively. We solve for the model in Eq. (1) using

minimum mean square error (MMSE). That is,

ŵ ¼ min
w
kr� Dwk2 ¼ ðD>DÞ�1

D>r; (2)

r̂ ¼ Dŵ: (3)

The MMSE optimized values of wk for all subjects and for

the nine features sets are shown in Fig. 8(a). These are

obtained for Db set to 100% of tc. For a majority of subjects,

wk is negative for all the feature sets. This signifies that, on

average, RT decreases with increased feature distance. Some

feature sets have a greater negative slope than others. For

example, the slope is maximally negative for MFCC-D and

MFCC-DD feature sets. To quantify the modeling perfor-

mance, we used the r-square measure,53 computed as

r-square ¼ 1� kr� r̂k2
2

kr� �rk2
2

; (4)

where �r is the mean of elements in r. The r-square is also

referred to as the “explained variance” by the model; a value

close to 100% indicates good modeling performance; that is,

the proposed model is able to better explain the observed

variance in the data.

Figure 8(b) shows the obtained r-square (shown in % as

explained variance) for different feature sets. For clarity of

FIG. 7. (Color online) Proposed

approach to model RT using acoustic

features before and after change instant.

TABLE I. Acoustic features used in the regression model analysis.

Feature set Features Type Dimension Time scale

F0 Fundamental frequency Spectral 1� 1 25 ms

LSF Line spectral frequencies Spectral 10� 1 25 ms

MEL Mel-spectrogram Spectral 40� 1 25 ms

MFCC Mel-frequency cepstral coefficients Spectral 12� 1 25 ms

MFCC-D First-order temporal derivative of MFCCs Spectral 12� 1 25 ms

MFCC-DD Second-order temporal derivative of MFCCs Spectral 12� 1 25 ms

ENGY-D Derivative of short-time energy Temporal 1� 1 25 ms

PLOUD Loudness strength, sharpness, and spread Spectral 3� 1 25 ms

SPECT Spectral flatness, spectral flux, spectral roll-off, spectral shape, spectral slope Spectral 8� 1 25 ms
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presentation, the depicted percentage is the average percent-

age across all subjects. At the level of individual features,

the MFCC-D outperforms all other feature sets. Moreover, a

majority of feature sets fall below 10%, thereby failing to

explain a significant portion of the variance in RT.

To examine combinations of features sets, we performed

a multiple linear regression by combining the feature distan-

ces from all feature sets as follows:

log RT1

log RT2

..

.

log RTNp

2
664

3
775

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
r

¼

1 d1;1 … d9;1

1 d1;2 … d9;2

..

.

1 d1;Np
… d9;Np

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D

w0

w1

..

.

w9

2
664

3
775

|fflffl{zfflffl}
w

: (5)

This gave the best r-square [see Fig. 8(b)]. A p-value (from

hypothesis testing) illustration depicting the relevance of each

feature set in the multiple linear regression is shown in Fig.

8(c). The MFCC-D and MFCC-DD are most relevant,

p< 0.05, across all subjects. A scatter plot of RT versus esti-

mated RT, pooling all subjects’ trials, is shown in Fig. 8(d).

The Pearson correlation coefficient amounted to 0.8, indicat-

ing a good overall estimation accuracy. Also, it can be seen

that a major portion of true RT fall in the range 400–1000 ms,

with few trials with RT> 1000 ms. In this range, the estima-

tion is also concentrated along the y¼ x line.

We also tested the modeling performance with decreas-

ing duration of segment Db, that is, duration set to 75%,

50%, or 25% of tc duration before the change instant [as shown

in Fig. 7(b)]. The result shown in Fig. 8(b) depicts that using

100% of the segment duration better models human perfor-

mance, with systematic decreases as the sample of the first

talker’s speech decreases in duration.

D. Talker pair-wise analysis

To analyze the variability in TCD performance across

the talker pairs, we examined talker-wise performance in

TCD RT (see Fig. 9). Most of the talker pairs have the aver-

age RT (computed across subjects) in the same range, except

T1 – T5 and T5 – T1. Also, the miss rate was found to be

higher for these pairs of talkers. This suggests that these

pairs may be overlapping a lot in the perceived talker space.

Comparing the FA rate, averaged across subjects, talker T3

had the highest FA rate.

IV. MACHINE SYSTEM FOR TCD

We evaluated the performance of three machine TCD

systems on the same stimulus materials used in the human

TCD experiment. The first system was an adaptation of a

state-of-the-art diarization system, designed to segment audio

into distinct talker segments based on i-vector and probabilis-

tic linear discriminant analysis (PLDA).54 Subsequently, the

talker change instants can be obtained as segment boundaries.

Traditionally, these systems use the whole audio file. We refer

to this mode of operation as offline TCD.

In contrast to offline machine systems, listeners in the

human TCD task did not listen to the whole audio file.

FIG. 8. (Color online) (a) Linear

regression slope indicating the perfor-

mance of individual feature sets in

accounting for the variance in human

TCD RTs. (b) The percentage of

explained variance (r-square) for the

linear regression model, averaged

across subjects. (c) Illustration of sig-

nificance (p-value) of different feature

sets in multiple linear regression. (d)

Scatter plot (polling all subjects’ trials)

of true RT versus estimated RT

obtained from a multiple linear regres-

sion model computed across all feature

sets.
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Instead, they performed an online change detection, pressing

the button as soon as a talker change was perceived. To bet-

ter model this aspect of human listening, we implemented an

online variant of the offline machine system. Here, the sys-

tem sequentially operated on segments of increasing dura-

tion starting with an initial 1 s segment for a given audio file.

The sequential operation was stopped as soon as the second

talker was detected, with this instant corresponding to the

response instant for a talker change in machine recognition.

An illustration of the approach is shown in Fig. 10. As we

hypothesized for human listeners, the online system uses the

acoustic features extracted from onset until the current seg-

ment duration in making a decision for talker segmentation.

The second machine system is the commercially avail-

able state-of-the-art IBM Watson Speech-to-Text (STT;

https://console.bluemix.net/docs/services/speech-to-text/getting-

started.html#gettingStarted) system that incorporates a talker

change detector module.55 The third system is purely based

on textual features with no access to the acoustic detail of

the speech. This text-based TCD system takes input from the

transcript of the audio file and analyzes the semantic similar-

ity between contiguous words for TCD. It thereby provides a

control system with which to evaluate whether our approach

to controlling semantic similarity in the novel TCD task

(introducing a change in sentence context on both trials with

and without a talker change) was successful.

For comparison of machine performance with human

TCD behavior, the hit rate, miss rate, and the FA rate were

computed using the same definitions as those for human

TCD experiments. Sections IV A–IV C describe the systems

and results.

A. Online and offline diarization-based TCD systems

We first segmented an audio file into small (750 ms) and

temporally overlapping segments (temporal shift of 500 ms).

Each short segment was transformed into an i-vector represen-

tation.56 All pair-wise distances between the short-segment

i-vectors were computed using a PLDA-based scoring approach.

In the literature, PLDA-based scoring has been shown to impart

robustness against small duration recordings (5–10 s) and varia-

tions in talking style,57 and this suits the present stimulus set.

Using the PLDA scores, agglomerative hierarchical clustering

was performed to identify short-segments belonging to the same

talkers and subsequently to merge the short-segments of the

same talker. The obtained output was a segmentation of the

input audio file into distinct single talker segments.

We developed the diarization system in the following

two modes:

Offline diarization: Here, the diarization was performed on

the complete audio file in one pass.

Online diarization: Here, instead of doing diarization across

the complete audio file in one pass, we began with an input

of 1 s and then sequentially increased it by 1 s, until two

talker segments were detected or the end of file was reached

(illustrated in Fig. 10).

The complete system setup was developed using the

Kaldi toolkit.58 This involved training the i-vector extractor

based on a universal background model composed of a 512-

component Gaussian mixture model with a diagonal covari-

ance matrix and trained on the LibriSpeech corpus.43 The

system used 12-dimensional MFCC features, obtained from

successive 25 ms (with temporal shifts of 10 ms) short-time

FIG. 9. (Color online) Dependence of (a) average RT on talker pairs (Tx-Ty), (b) average miss rate on talker pairs (Tx-Ty), and (c) average FA rate across

talkers.

FIG. 10. (Color online) Proposed sequential diarization system as an online

system for TCD.
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segments derived from the audio files. The MFCC features

were mean- and variance-normalized using a 3 s running

window. The i-vector representations were 128-dimensional.

The audio files corresponding to talkers used in the listening

test were removed from the training dataset.

Since the extraction of i-vectors involves an overlapping

shift, the system can flag a change instant before the actual

ground-truth change instant. In order to account for this

look-ahead, for these systems a tolerance window

d¼ 500 ms was given and the RT corresponded to a hit if tc
– d<RT< tcþ 2000 ms. The operating point for the system

can be tuned by varying the segment clustering threshold.

Thus, each operating point had its own miss- and false alarm

rates. Hence, we generated a detection error trade-off (DET)

curve for each system. These are shown in Fig. 12.

B. IBM Watson STT system

Along with an automatic speech recognizer (ASR), the

commercially available IBM Watson STT system also

includes a follow-up TCD system. Built as a one-of-a-kind

approach,59 the TCD system makes use of word boundaries

from the ASR output in addition to acoustic feature informa-

tion. For each acoustic segment corresponding to a pair of

contiguous words, two separate Gaussian models are fit

using MFCC features from left and right of the detected

word boundary, respectively. A talker change is flagged

based on the BIC algorithm or T2 criterion. Use of word

annotations from ASR reduces FAs in change detection

within a word and in non-speech regions. We used the off-the-

shelf implementation of this system available as a web applica-

tion program interface. This system is pre-tuned and provides

only one operating point. Like the diarization system, this sys-

tem also was found to often give a change instant before the

ground-truth change instant. This may be due to the larger tem-

poral context used in the ASR module. On post analysis for hit

rate computation, the detected change instant was found to lie

in tc – d<RT< tcþ 2000 ms, with d¼ 200 ms. We considered

all these responses as correct detections in hit rate computation.

The resulting miss and FA rates are shown in Fig. 12.

C. TCD based on textual features

Although we hypothesize that acoustic feature distribu-

tions are likely to play a major role in the listeners’ model of

talker identity, it is also likely that the listeners attended to

the semantics of the words making the stimuli.

Designing an experimental paradigm that mitigates

semantic contributions in order to evaluate the acoustic fea-

tures that contribute to TCD is challenging. The present

paradigm takes the approach of introducing a semantic
change on every trial. Hence, listeners cannot rely on a

semantic change as a reliable cue for TCD as some trials

feature no talker change. The challenge to disentangle the

contribution of text/content versus acoustic features led us

to examine a machine equivalent of TCD reliant upon only

the information conveyed by the text of our stimulus mate-

rial.60,61 The proposed text-based TCD system is shown in

Fig. 11. Using the transcripts from the LibriSpeech corpus,

we trained a Word2Vec model with the Gensim Python

package.62 The model represents every word with 128-

dimensional vector. This allows representing a sentence as

a sequence of vectors obtained from the constituent words.

We built a talker change detector by analyzing the semantic

similarity among sets of words via analysis of the vector

representations.

Specifically, the system is a classifier that takes N con-

secutive words as input and outputs a class label C0 if all

words are by a single talker and a class label C1 otherwise.

The value of N in this experiment was chosen after analyz-

ing the average number of words in a sentence spoken by

the first talker, as well as the average number of words spo-

ken by the second talker within 2 s. Using features from 15

consecutive words from the corpus of talkers reading audio

books, we generated training examples for the 2 classes.

The training set corresponding to two different talkers

(label C1) was created by taking the last ten words of a sen-

tence from the transcript of an audio book read by one

talker and the first five words from the transcript of an

audio book read by another talker. For the set of examples

with no talker change (class C0), the dataset was created by

taking ten words from the end of one sentence and the first

five words from the beginning of the following sentence,

both drawn from transcripts of the audio book read by one

talker. This dataset was created excluding the transcripts of

audiobooks corresponding to the listening set. Using the

training examples, we train a long short-term memory net-

work (LSTM) to predict talker change based on context.

The model was designed using the Keras toolkit63 com-

prised of 1 LSTM layer with 512 cells followed by 3 dense

layers with 1024, 512, and 256 neurons. The test corpus

was made from the transcripts of the sentences used in the

listening test. Each sentence was input as a series of N¼ 15

words to reflect the training set input, shifting a word by

one to capture all words. A stimulus is marked as a change

when it consists of at least one word from C1. For comput-

ing DET curves, a threshold was used on the posteriors

from the LSTM model. The resulting performance is shown

in Fig. 12.

V. DISCUSSION

Summarizing the findings, the results from the experi-

ments make three primary contributions toward understand-

ing human and machine TCD performance.

FIG. 11. (Color online) Illustration of text-based context change classification.
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A. Human performance for TCD

Human listeners performed the TCD task with very high

accuracy, averaging only a 2.62% miss rate and 8.32% FA

rate. The presence of FAs signifies that human listeners

sometimes reported a talker change when there was none.

This can be partly attributed to varying stress, intonation,

and speaking rate exhibited by each talker during the course

of reading the story book. At the same time, the high accu-

racy contrasts with some prior studies reporting high rates of

“change deafness” to a change in talker.11 However, it is

important to note that the present task required listeners to

direct the attention to detect a change in talker rather than to

the comprehension alone. As suggested in prior research,11

conversation expectations and task are likely to influence

human listeners’ direction of attention to fine-grain details of

voice. At least in the context of an overt task requiring TCD,

the present results demonstrate human listeners’ ability to

track acoustic features across talkers and differentiate the

dimensions most relevant to detecting a change among male

voices. Here, in the interest of investigating the issue in a

controlled task, we examined read speech from audio books.

The same approach might be applied to other stimulus sets

capturing even more natural conversational speech, although

in these cases covariation with context, semantic continuity,

and other factors would be likely to complicate attempts to

understand listeners’ ability to track distributional informa-

tion across acoustic dimensions that are related to talker

identities.

Speculating from average RT to detect a change, the per-

ceptual load for TCD appears to be greater than for simpler

acoustic change detection scenarios such as noise-to-tone

change or tone frequency change in the same listeners (experi-

ments are reported in the supplementary material45). Pooling

trials across listeners, the average RT for change detection

was 680 ms (standard deviation¼ 274 ms), which was close to

twice the average RT for a noise-to-tone change detection,

and falls within the average RT associated with a tone fre-

quency change detection task (done with different magnitudes

of change). These differences may be attributed to recruitment

of different auditory sub-processes for change detection in the

context of speech and non-speech stimuli, specifically the

need to accumulate distributional acoustic information across

the more complex, multi-dimensional acoustic features that

convey talker identity.

B. Estimating RT using a simple regression model on
feature distances

We used a linear model to relate human listeners’ log RT

to detect a talker change and acoustic feature distances across

a set of acoustic features. A simple Euclidean distance mea-

sure between the mean of the acoustic feature measurement

corresponding to speech segment before and after change

instant was used. Interestingly, we found the Pi�eron’s law,49

stating decrease in RT with increase in “strength of evidence”

(such as loudness or frequency difference for tone stimuli), to

hold for distance computed in the feature space [negative

slopes in Fig. 8(a)] for TCD as well. Quantifying the model

performance in terms of the percent of explained variance, the

best fit was obtained in the MFCC-D feature space, followed

by MFCC-DD and ENGY-D features. The 12-dimensional

MFCC representation derived from MEL representation is a

spectrally smoothed representation of the short-time spectrum,

preserving the spectral peaks corresponding to formants with

minimal pitch information. The MFCC-D representation,

derived from the temporal derivative of MFCC, captures the

rate of variation in the MEL representation. The improved

model performance with the MFCC-D feature suggests that

listeners are likely using the spectro-temporal variability in

formant frequency space while attending to detect talker

changes. We found a poor model fit with fundamental fre-

quency (F0), often implicated in talker differences. This may

be because there was considerable overlap in the fundamental

frequency spread across our all-male set of talkers (shown in

Fig. 2). Likewise, it is notable that application of a multiple

regression model using the nine feature sets as independent

variables improved the model performance (r-square � 0.6).

A significant contribution in this model came from MFCC-D

and MFCC-DD [p< 0.05; see Fig. 8(c)]. This suggests that

TCD involved tracking acoustic information across a quite

complicated feature space. Visualizing the quality of esti-

mated and true RTs (pooling from all subjects) we found a

correlation of 0.8 [Fig. 8(d)]. A majority of true RTs fall in

the range 400–900 ms, and a significant portion of this was

mapped to the same range by the proposed model. Focusing

FIG. 12. (Color online) Detection error

trade-off (DET) curve for all the TCD

systems evaluated on the stimuli set

used in the listening experiments. The

IBM Watson system is a single operat-

ing point. The human score is also

marked in this figure for reference.
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on the duration of speech segment before change instant used

in the model estimation showed a systematic improvement in

performance with duration for all the features [Fig. 8(c)]. This

suggests that TCD response is less predictable using local

information around the change instant and likely the listener

continuously builds a talker model while attending to speech.

C. Machine performance on the TCD task

The offline diarization system provided better perfor-

mance than the online system machine TCD system. This can

be attributed to improved clustering of the i-vectors into two

clusters because of availability of more data after change

instant compared to the online case. The text-based TCD sys-

tem exhibited relatively poor performance, indicating that, for

the stimulus set, the text features did not suffice for TCD.

This provides assurance that our novel paradigm for assessing

human TCD (in which a change in sentence context was intro-

duced on each trial independent of a talker change) was suffi-

cient to reduce any bias arising from the semantic content of

the utterance before and after the change instant. The IBM

Watson has a FA rate too high for the successful use of the

system in natural speech conversations, and underscores the

importance of modeling the acoustic distributional character-

istics of talkers’ voices in supporting successful diarization. In

fact, documentation of the system does caution that the pres-

ence of speaking style variations in the utterances may lead to

high FA rates. Comparing human and machine systems we

found a considerable gap in performance, with humans signif-

icantly outperforming state-of-the-art machine systems (see

Fig. 12). In all, the present results highlight the complexity of

the acoustic feature space that listeners must navigate in

detecting talker change and underscores that machine systems

have yet to incorporate the optimal feature set to model

human behavior.

VI. CONCLUSIONS

The key contributions from the paper can be summa-

rized as follows:

(i) Developing a novel paradigm for probing the human

TCD across short-duration natural speech utterances.

(ii) Characterizing human TCD performance using vari-

ous parameters—RT, hit rate, miss rate, and FA rate.

(iii) Building a simple linear regression-based model that

estimates the human RT in TCD using the distance

between mean acoustic features from speech seg-

ments. This model revealed the significance of

MFCC-D and MFCC-DD acoustic features in TCD.

(iv) Comparing and benchmarking the machine TCD sys-

tem performance implemented using principles of

speaker diarization and textual features with human

TCD performance.
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speech representations using a pitch-adaptive time-frequency smoothing

and an instantaneous-frequency-based F0 extraction: Possible role of a

repetitive structure in sounds,” Speech Commun. 27(3-4), 187–207

(1999).
44https://gorilla.sc (Last viewed 15 August 2018).
45See supplementary material at https://doi.org/10.1121/1.5084044 for sup-

plementary experiments and results on change detection.
46Sennheiser HD 215 II closed over-ear back headphone with high passive

noise attenuation (Hanover, Lower Saxony, Germany).
47A. Mirzaei, S.-M. Khaligh-Razavi, M. Ghodrati, S. Zabbah, and R.

Ebrahimpour, “Predicting the human reaction time based on natural image

statistics in a rapid categorization task,” Vision Res. 81, 36–44 (2013).
48R. T. Pramod and S. P. Arun, “Do computational models differ systemati-

cally from human object perception?,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016).

49D. Pins and C. Bonnet, “On the relation between stimulus intensity and

processing time: Pi�eron’s law and choice reaction time,” Percept.

Psychophys. 58(3), 390–400 (1996).
50L. R. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition

(PTR Prentice Hall, Englewood Cliffs, 1993), Vol. 14.
51G. Peeters, “A large set of audio features for sound description (similarity

and classification) in the CUIDADO project,” Tech. Rep., IRCAM (2004).
52B. Mathieu, S. Essid, T. Fillon, J. Prado, and G. Richard, “Yaafe, an easy

to use and efficient audio feature extraction software,” in ISMIR (2010),

pp. 441–446.
53A. C. Cameron and F. A. G. Windmeijer, “An R-squared measure of good-

ness of fit for some common nonlinear regression models,”

J. Econometrics 77(2), 329–342 (1997).
54G. Sell and D. Garcia-Romero, “Speaker diarization with PLDA i-vector

scoring and unsupervised calibration,” in Spoken Language Technology
Workshop (SLT), IEEE (2014), pp. 413–417.

55https://github.com/IBM-Bluemix-Docs/speech-to-text (Last viewed

August 4, 2018).
56N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-

end factor analysis for speaker verification,” IEEE/ACM Trans. Audio,

Speech Lang. Process. 19(4), 788–798 (2011).
57I. Salmun, I. Opher, and I. Lapidot, “On the use of plda i-vector scoring

for clustering short segments,” in Proc. Odyssey (2016).
58D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M.

Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer,

and K. Vesely, “The Kaldi speech recognition toolkit,” in IEEE Workshop
on Automatic Speech Recognition and Understanding, EPFL-CONF-

192584 (2011).
59D. Dimitriadis and P. Fousek, “Developing on-line speaker diarization sys-

tem,” in INTERSPEECH (2017).
60Z. Meng, L. Mou, and Z. Jin, “Hierarchical RNN with static sentence-

level attention for text-based speaker change detection,” in Proceedings of
the 2017 ACM on Conference on Information and Knowledge
Management (2017), pp. 2203–2206.

61I. V. Serban and J. Pineau, “Text-based speaker identification for multi-

participant open-domain dialogue systems,” in NIPS Workshop on
Machine Learning for Spoken Language Understanding, Montreal,

Quebec, Canada (2015).
62R. �Reh�uøek and P. Sojka, “Software framework for topic modelling with

large corpora,” in Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, ELRA, Valletta, Malta (2010), pp.

45–50.
63F. Chollet, “Keras,” available at https://keras.io (Last viewed 15 August

2018).

142 J. Acoust. Soc. Am. 145 (1), January 2019 Sharma et al.

https://doi.org/10.1109/89.222875
https://doi.org/10.1109/89.222875
https://doi.org/10.1109/LSP.2004.831666
https://doi.org/10.1016/j.specom.2007.08.003
https://doi.org/10.1109/TASL.2009.2024730
https://doi.org/10.1109/TASL.2007.896665
https://doi.org/10.1109/TASL.2007.896665
https://doi.org/10.1016/S0167-6393(98)00085-5
https://gorilla.sc
https://doi.org/10.1121/1.5084044
https://doi.org/10.1016/j.visres.2013.02.003
https://doi.org/10.3758/BF03206815
https://doi.org/10.3758/BF03206815
https://doi.org/10.1016/S0304-4076(96)01818-0
https://github.com/IBM-Bluemix-Docs/speech-to-text
https://doi.org/10.1109/TASL.2010.2064307
https://doi.org/10.1109/TASL.2010.2064307
https://keras.io

	s1
	l
	n1
	s1A
	s1B
	s2
	s2A
	s2B
	f1
	s2C
	s2D
	f2
	f3
	s3
	s3A
	s3B
	s3C
	f4
	s3C1
	s3C2
	d1
	f6
	f5
	d2
	d3
	d4
	f7
	t1
	d5
	s3D
	s4
	f8
	s4A
	f9
	f10
	s4B
	s4C
	s5
	f11
	s5A
	s5B
	f12
	s5C
	s6
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63

